15 research outputs found

    Advancing Parsimonious Deep Learning Weather Prediction using the HEALPix Mesh

    Full text link
    We present a parsimonious deep learning weather prediction model on the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) to forecast seven atmospheric variables for arbitrarily long lead times on a global approximately 110 km mesh at 3h time resolution. In comparison to state-of-the-art machine learning weather forecast models, such as Pangu-Weather and GraphCast, our DLWP-HPX model uses coarser resolution and far fewer prognostic variables. Yet, at one-week lead times its skill is only about one day behind the state-of-the-art numerical weather prediction model from the European Centre for Medium-Range Weather Forecasts. We report successive forecast improvements resulting from model design and data-related decisions, such as switching from the cubed sphere to the HEALPix mesh, inverting the channel depth of the U-Net, and introducing gated recurrent units (GRU) on each level of the U-Net hierarchy. The consistent east-west orientation of all cells on the HEALPix mesh facilitates the development of location-invariant convolution kernels that are successfully applied to propagate global weather patterns across our planet. Without any loss of spectral power after two days, the model can be unrolled autoregressively for hundreds of steps into the future to generate stable and realistic states of the atmosphere that respect seasonal trends, as showcased in one-year simulations. Our parsimonious DLWP-HPX model is research-friendly and potentially well-suited for sub-seasonal and seasonal forecasting

    Inductive biases in deep learning models for weather prediction

    Full text link
    Deep learning has recently gained immense popularity in the Earth sciences as it enables us to formulate purely data-driven models of complex Earth system processes. Deep learning-based weather prediction (DLWP) models have made significant progress in the last few years, achieving forecast skills comparable to established numerical weather prediction (NWP) models with comparatively lesser computational costs. In order to train accurate, reliable, and tractable DLWP models with several millions of parameters, the model design needs to incorporate suitable inductive biases that encode structural assumptions about the data and modelled processes. When chosen appropriately, these biases enable faster learning and better generalisation to unseen data. Although inductive biases play a crucial role in successful DLWP models, they are often not stated explicitly and how they contribute to model performance remains unclear. Here, we review and analyse the inductive biases of six state-of-the-art DLWP models, involving a deeper look at five key design elements: input data, forecasting objective, loss components, layered design of the deep learning architectures, and optimisation methods. We show how the design choices made in each of the five design elements relate to structural assumptions. Given recent developments in the broader DL community, we anticipate that the future of DLWP will likely see a wider use of foundation models -- large models pre-trained on big databases with self-supervised learning -- combined with explicit physics-informed inductive biases that allow the models to provide competitive forecasts even at the more challenging subseasonal-to-seasonal scales
    corecore